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I. Introduction and Program Objective

Current methods of lifetime assessment leave much to be desired. Typically, the expected life
of a full-scale component exposed to a complex environment is based upon empirical
interpretations of measurements performed on microscopic samples in controlled laboratory
conditions. Extrapolation to the service component is accomplished by scaling laws which, if
used at all, are empirical; little or no attention is paid to synergistic interactions between the
different components of the real environment. With the increasingly hostile conditions which
must be faced in modern aerospace applications, improvement in lifetime estimation is mandated
by both cost and safety considerations.

This program aims at improving current methods of lifetime assessment by building in the
characteristics of the micro-mechanisms known to be responsible for damage and failure. The
broad approach entails the integration and, where necessary, augmentation of the micro-scale
research results currently available in the literature into a macro-scale model with predictive
capability.

In more detail, the program will develop a set of hierarchically structured models at different
length scales, from atomic to macroscopic, at each level taking as parametric input the results
of the model at the next smaller scale. In this way the known microscopic properties can be
transported by systematic procedures to the unknown macro-scale region. It may not be possible
to eliminate empiricism completely, because some of the quantities involved cannot yet be
estimated to the required degree of precision. In this case the aim will be at least to eliminate
functional empiricism. Restriction of empiricism to the choice of parameters to be input to
known functional forms permits some confidence in extrapolation procedures and has the
advantage that the models can readily be updated as better estimates of the parameters become
available.

II. Program Organization

The program has been organized into specific tasks and subtasks as follows.

Task 100. Lifetimes of metallic dispersed-phase composites

Most service materials fall into the category of dispersion-hardened metallic composites. This
task will consider the problem of dispersion hardened materials in general, but with two specific
materials, NiAl and MoSi 2/SiC in mind.

Task 110. Identification and modelling of micromechanisms

The purpose of tl:s task is to determine what micromechanisms are operative in the high-
temperature deformation of dispersion-hardened materials. In the general case this will be done
by a literature search. For specific materials, the micromechanisms will be determined from the
experimental program at NRL. Once identified, each of these micromechanisms will be
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modelled, in order to determine what are the critical parameters which determine its effect on
plastic flow and values for these parameters. Also to be determined is whether the modelled
critical values are dependent on quantities which must be obtained from a smaller scale model.

Task 111. Equiaxed dispersoids

This task will consider dispersions of the type encountered in NiAl-like materials. That is, the
dispersoids are considered to be small compared to the grain size. The term 'equiaxed' is used
because the particles are roughly of the same size in all three dimensions. However, this is not
a requirement for this task. Rather, it is necessary that the particles not be too large in the

-dimension normal to the slip plane, so that they can be surmounted with relative ease by cross-
slip and/or climb without the generation of appreciable back-stress.

Task 112. Anisotropic dispersoids

This task covers the case of dispersoids which are elongated in the direction normal to the slip
plane. An example is SiC fibers in MoSi2. In this case, plastic flow around the dispersoids takes
place by a combination of glide and climb, but is a protracted process during which large
stresses acting in opposition to the applied load are developed.

Task 113. Grain boundary effects

This task will examine the role of grain boundary processes in high-temperature deformation.

Task 120. Macroscopic stochastic model for creep

In real materials it is likely that more than one mechanism will be operative, either in parallel
or in series. The information gained in task 110 is not sufficient to describe this situation. Once
the critical parameters for individual mechanisms have been determined, it is necessary to
combine them in a macroscale stochastic model. This will be done by determining critical
stresses and activation enthalpies as a function of local geometry and using these values in a
finite-temperature simulation of creep through a random array of dispersoids. Careful attention
must be paid to possible interactions between mechanisms.

Task 130. Extension to cyclic deformation

The final step in task 100 is to extend the results to the case of cyclic deformation. Irreversibility
is an intrinsic feature of the model in task 120. However, it is likely that other, as yet
unrecognized, characteristics of cycled deformation will have to be considered.

Task 200. Lifetimes of piezoelectric ferroelectrics

Failure in cyclic loading of sensors and actuators formed from lead zirconate titanate (PZT) is
a continuing problem. PZT is a ceramic and therefore differs from the materials considered in
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task 100 in that plastic deformation is not involved. This task will examine, modelling as
necessary, the operation of PZT devices, in order to determine the factors governing lifetime
limitation.

Task 300. Reporting

Running concurrently with tasks 100 and 200, this task will inform the Navy Program Manager
and Contracting Officer of the technical and fiscal status of the program through R&D status
reports.
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III. Technical Progress

Task 111. Equiaxed dispersoids

a. Theory

Hardening of metals by means of second-phase or extrinsic particles, commonly known as
dispersion hardening, has been a standard route to improvement of the mechanical properties of
metals for many years. There are several distinct mechanisms for the hardening, all of which
involve retardation of plastic flow.

eOrowan looping, or the impedance to flow offered by impenetrable obstacles.
6 Stacking fault hardening, in which the stacking fault energy inside the obstacle
is different from that in the matrix.
0Order hardening, for which the crystal structure within the obstacle forms an
ordered superlattice, so that the low-energy deformation route requires paired
dislocations.
eChemical hardening, which results from the surface energy generated when a
precipitate is intersected.
*Modulus hardening, due to a mismatch of elastic constants between dispersoid
and matrix.
eCoherence hardening, caused by the back-stress from inclusions which do not
fit into the holes in the matrix without elastic deformation.

For each of the mechanisms listed above, there exists an approximate theory, usually supportable
with a single set of experimental measurements. The experiments themselves are difficult,
because the mechanisms are not separable and the range of variables which can be accessed is
severely limited. This is not at all a satisfactory foundation on which to build a global
deformation model.

Our unified approach, based on extensive computer modelling of individual mechanisms, has
been to recognize that the problem is essentially geometric, the primary factors being the size

D and spacing L of the dispersoids, as
illustrated in Figure 1. The detailed nature of
the particular mechanisms is of no practical

Xconsequence, and can be accommodated by
assigning an intrinsic strength, or impedance,
to each obstacle. This intrinsic impedance

VL can also be expressed in geometric terms by
the breaking angle 0 (see Figure 1). The
strength of any dispersed-phase composite

Figure 1 Definition of the geometric parameters then depends only upon the statistical
D, L and 0. distributions of these three geometric

parameters.
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Work to date has concentrated on regular dispersions, that is, those for which the three
parameters L, D and 0 are single-valued throughout the material. Even this limited theoretical
model gives a better description of the available experimental work than any earlier treatment.
Specifically, we have reprocessed or performed computations of the strength of regular arrays
for the cases of coherence hardening', modulus hardening2 , stacking fault hardening3 and order
hardening3 , in both particle intersection and Orowan looping limits. We find that in all cases the
strength is described well by the expression

a= jib inXsine (1)

2nAL

where X is the harmonic mean of D and L, that is

1 _ 1 +1 (2)
X D L

and A is a constant which is unity for screw dislocations and (l-v) for edge dislocations. Use
of the harmonic mean for X, which is the characteristic length describing the elastic energy of
the dislocation configuration, reflects the dominant influence on the line energy of the dispersoid
and interdispersoid dipoles (formed by the arms XX and X'X, respectively, in Figure 1).

It is important to note that we find equation (1) to be valid for all applied stresses, even those
less than the critical values. This means that (1) applies to the creep (unidirectional and cyclic)
conditions important to lifetime studies.

b. Comparison with Experiment

There is no question but that the fundamental hardening stems from an Orowan-like impedance
and therefore depends, to first order, inversely on the dispersoid separation L. The classical
Orowan model, based on elementary line tension theory, predicts the dependence

0.0153 =o .= -sin0 (3)
0.010-

with the breaking angle factor sin0 = 1.
V .0 However, a simple plot of the hardening Aa

,,•..against 1/L (Figure 2) reveals that this
0.000 2 :", " ," approximation is grossly inadequate. The

0.0 0.012 1AL0.024 0.036 experimental data shown in Figure 2 consist1 /L of 79 measurements from eight distinct

Figure 2 An Orowan plot of strength for sources11, encompassing all of the
dispersion hardened materials, hardening mechanisms detailed above. The

solid line indicates the theoretical
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dependence (3). In principle, a knowledge of the true breaking angles might improve the
agreement, but none of the experimental work includes this information, which would require
in-situ TEM measurements. Suitable values for 0 could bring all values below the line in Figure
2 into agreement with (3), but not the many points which lie above the line.

To compare the data with our unified approach, equations (2) and (3), we use the correction for
coherent precipitates introduced by Duesbery and Sadananda', which defines the effective
diameter D* of a coherent obstacle by the relation

(D*)4 = 0.25Le (4)
D

where e is the misfit factor. There remains the problem of the unknown breaking angle. The
approach we have taken for this is to use the
experimental data to derive the distribution 0.015
N(O) required for the experimental points to
fit the theoretical prediction. The results for
the data plot are shown in Figure 3. Although 0.010
the fitting of the breaking angle guarantees
that most of the data points will fall exactly < 0.005
on the theoretical line, this is not entirely a
trivial exercise. In Figure 3 only two points
lie above the theoretical line, and these only 0.o00 - 0.02 0.0 00 0.0.00 0.010.2 .0 0.4 .5
just so. This contrasts favorably with the case

shown in Figure 2. ln(X)sin0/(L-D)

Figure 3 Plot of strength following the unified
approach of equation (2).

The distribution N(0) is shown in Figure 4. It
can be seen that the required breaking angles
fall mostly in the range of 10"- 500, much smaller than the 90' usually assumed, but consistent

with the angles observed in computer modelling
of coherent 2 and/or penetrable 2.3 dispersoids.

0.3-
We cannot state unequivocally that the

_- 0.2- experimental results prove that our unified
z I - approach is valid. This is simply because the

0o.1- experimental measurements do not contain
enough information for this purpose. However,

0.0 y we can state with confidence that all of the
0 30 60 90 experimental work is consistent with the unified

approach.
Figure 4 The distribution of breaking angles.
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c. Implications

* The importance of the unified description (2) is that it applies to all passing mechanisms (with
the possible exception of cross-slip and climb), for all dispersed phase composites in which
classical dispersion hardening dominates. The utility of the approach is that it permits the ready
construction of a global geometric model in which the dispersion is characterized by the
characteristic length X and the details of the dislocation-particle interactions are subsumed into
the breaking angle distribution N(O). This permits the ready calculation of activation enthalpies
for plastic flow.

* The unified description applies not only to ultimate strength estimation, but also to
deformation by unidirectional and cyclic creep.

d. Plans

* Develop this unified approach into a stochastic, high-temperature creep model in two steps:

1. Creep models for specific mechanisms (as defined by the breaking angle) with both regular
and random arrays of dispersoids, in order to determine stress exponents for comparison with
and analysis of experiments.

2. A combined model for creep through a random array of dispersoids with a spectrum of
strengths.

* Hence compute lifetimes in unidirectional and/or cyclic deformation as estimates of the time
required to reach a critical level of damage.
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Task 112. Anisotropic dispersoids

An analytic model of the hardening due to elongated fibers, or whiskers, has been developed.

a. Theory

We assume slender cylindrical whiskers of length 21 and radius r to lie parallel to the axis of
deformation and not to take part in that deformation. The first assumption does not impact the
conclusions significantly. We further suppose that the material in which the whiskers are
imbedded, strains uniformly at a rate c. This deformation is achieved by processes which differ
in detail with distance from the interface of the non-deforming cylinders. At remote positions
deformation is achieved simply by dislocation glide. In the neighborhood of a cylinder and
specifically at distances from the surface of the order of interatomic spacings, glide is inhibited
and is replaced by 'glimb' (a combination of glide and climb, possibly alternating) while
individual dislocations form elliptical loops which circumnavigate the perimeter of a particular
cylinder. Each such loop retains its own characteristic Burgers vector, but the mean direction
of all such Burgers vectors is parallel to the direction of straining. Then referring our
considerations to the steady state in which incremental strain is everywhere continuous we
require that the net forces and motion of the glimbing dislocations be parallel to the interface
and that the number of dislocation of magnitude b which glimb past a point distant x from the
mid point of a whisker be

x- = A~X)V(X) (5)
b

where v(x) is the dislocation velocity and f(x) the density (that is the number of dislocations of
magnitude b per unit length) at the said position x. The force acting per unit length (L) of any
dislocation is

F=abL (6)

when the stress a and the Burgers vector, of magnitude b, are so disposed that the force on the
dislocation is in the direction of the Burgers vector. Here, as stated above, the mean direction
of the Burgers vectors of all dislocation loops is parallel to the axis of strain and we shall in the
first instance suppose that this direction is parallel to that of the axes of the cylinders. Taking
advantage of the fact that this model requires that these dislocations move parallel to this same
direction we replace, fo the purposes of calculation of stresses, the actual arrangement of
elliptical dislocation loops with a continuum of circular loops, having displacement vectors
parallel to the mean of their directions and this to the axes of the cylinders. We further require
that the glimb of these dislocations involve the emission and absorption of vacancies and thus
the processes of diffusion. To the extent that the velocity resultant on the application of a force
may be regarded as the consequence of an Einstein drift it is given by
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DF Dbo
V -TT- (7)kT kT

where D is the coefficient of self diffusion of the matrix, k is Boltzmann's constant and T the
temperature. Since the dislocation motion is restricted by the need for climb it can be. argued
that F should be identified as the force available for that motion. However, it would seem likely
that the actual motion would be clearly separable into climb and glide over only very short
lengths (i.e. a few Burgers vector distances) with the result that the force available would be that
for the mean motion. The stresses developed on the glimbing dislocations are given by

ocy W 2•b A)Jt) G(t~x)dt (8)
27c (I -v)(8

Because the dislocations which surround the cylinder are taken to be circular loops, with Burgers
vectors normal to the planes of the loops we see that the stress relevant in the calculation of the
force parallel to the axis of the cylinders is that for shear. The stress from such a loop has been
calculated by Kroupa12. However, one may as first approximation avoid the usage of the
complicated representation of the stresses by recognizing that for small values of t-x, that is
when the factor h = (t -x) /r < < 1, that

G(tx)- (9)
t-X

and decreases very rapidly as h increases outside this range. Then, as a first step towards a
simple and reasonably accurate approximation we write (8) as

o(x) =- ib vr-x At) dt (10)2741-v) -a, x t-x

where a is a constant of order unity. Expanding f(t) in a Taylor series about the point x this
becomes

(x) - b ax J(x) + df + (t-x) df + ...dt (11)2-x(l-v)f-,ar÷x t-x dx 2 dX2

and we have

) lbar df (12)
7(I-v) dx

The latter approximation rests on the supposition that the contributions in (8) from terms
involving higher derivatives of f(x) are small. As we shall see later, examination of the result
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obtained in this way shows the error to be small except at points within ar of the ends of the
cylinder. This approximation is justified by recognizing that we have neglected the terms

a 3r 3 + 3arx2 d•f + (13)
3 dx3

This series for f(x) as defined in (11) is clearly convergent when x/1 is small. The approximation
adopted is acceptable provided the ratio of successive terms is sufficiently small. In particular,
it is necessary that the ratio of the first neglected term is small compared with that retained. This
ratio is

12 a2r 2 + X2(14)

3 (1 -X 2)2

and is < 0.2 provided that x < 0.75. Similar conclusions follow for the ratios of further terms.
Thus, the approximation is valid everywhere save at points close to the ends of the whiskers.
From (5) and (7) we then have

ix _ b2Dar fdf (15)
b n(1-v)kT dx

whence

F=I 7(1-v) (12 - x 2)]AV2  (16)

gb2 DAr

and

o(x) p[ i-adkTr 2x (17)
i (1-v)bD (2 -W

u(x) is a shear stress which acts over the lateral surface of the cylinder and which produces a
total force

2nrJfo I(x)dx (18)

We equate this force to that derived from a uniform normal stress which acts parallel to the axis
of the cylinder. This stress is given by
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21/(x)dx ] [ (19)
r O in(1 -v)b 2Dr

Then on the basis that the aspect ratio (l/r) of the cylinders is large we suppose that the normal
force in the cylinders associated with this stress must be balanced by one which operates in the
matrix and which, to a first approximation is equivalent to a stress

A = 2c , iiaikT2 .]• (20)

1 -C cl t-v)b 2Dr

b. Comparison with experiment

To examine the effect of this stress on the observed strain rate we recognize that

S= /co" (21)

where ar is the operative stress. In the presence of fibers the operative stress becomes:

S- Ar = T - a (22)

On substitution of best estimates of the values appropriate for MoSi2 ; A = 100GPa; T = 1400K;
I = 30gm; r =3p.m; b= 0.3nm and with 20% of SiC we get, almost independent of E, Ar =
5MPa. This value, in view of the uncertainties in the values of the parameters, is in excellent
agreement with that found at NRL by Sadananda'3, namely 10 MPa.

c. Implications

* The analytic theory agrees with experiment.

d. Plans

* Numerical computations will be performed to check the influence of the approximations in the
analytic theory.

* Comparison with experiment will be extended to a wider range of environments.
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Task 120. Macroscopic stochastic model for creep

The methods of Boltzmann's classical statistical mechanics have been employed to calculate the
yield strength in the absence of thermal activation in the case where hardening is due to
randomly dispersed spherical particles.

a. Theory

We seek to determine the yield strength at OK of a material hardened by the presence of
spherical particles which act as simple blocks to the motion of dislocations. The analysis is based
on a consideration of the stability of a sequence of lengths of a single dislocation which has
impinged on spherical particles in the process of traversing a slip plane.

We assume that when acted on by a uniform stress a, dislocations are bent into arcs of circles
of radius R, where

o _b (23)
R

/s is the shear modulus and b the magnitude of the Burgers vector; that impenetrable particles
are randomly distributed and provide restraining forces of a magnitude which is related through
an angle ct(r) to the size r of the circle of intersection of particle and slip plane and which is
specified by

F = ib 2sin cc(r) (24)

and that the yield stress is the largest for which it is possible to have a stable dislocation join an
infinite number of particles along a line which is essentially straight and hence does not cross
itself.

Towards the determination of this stress we
shall adapt the theoretical analysis given by
Hanson and Morris14 and by Labusch"5 for the
yield strength due to such a dispersion of
point obstacles all of which provide the same
maximum restraining force of

F = lib2sina - acb 2  (25)

This analysis rests on the rolling circle R

technique employed by Foreman and Makin'"
in their numerical investigation of this
hardening. Thus, it was argued (see Figure 5) Figure 5 The rolling circle construction
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that a dislocation stable at a sequence of
positions ... , k-2, k-1 will also be stable at the
next position k provided the particle associated k-
with the k+ 1th position is centered anywhere

in the region traversed by a rolling circle as
shown hatched; this region is bounded by an tk+1 tk+1
angle 0 < 2u. A particular characteristic of tk
such sequences of dislocation lengths is that
they must not cross themselves. Figure 6 Relationship between tk and tk+I.

Here, we shall adapt the treatment of Hanson
and Morris"4 to the case where the strength of a particular obstacle depends on the radius of the
circle of intersection between the spherical particle concerned and the slip plane. To proceed,
we note first from Figure 5, in the case of point obstacles that, following the path of a rolling
circle, the angle turned between successive tangents, tk, is equal to the angle O which gives the
direction of the trailing circle edge at the point of rotation (see Figure 6). It is then readily seen
that in the case of an obstacle with radius r, the angle turned becomes

v = (I+R) =T (26)
R

Then, if the number of points is N and if the angle 4 occurs ni times we have

n

N 7 n, (27)
i-I

and the total angle turned is

= ~ (28)
i-i

If N is indefinitely large but 0 finite, the average value of 0i is zero. In this case the whole
dislocation line is either straight or contains equal numbers of complete clockwise and
anticlockwise rotations. The latter configuration is a situation of low probability which we can
neglect.

The procedure for the determination of the thermodynamic probability is akin to that employed
to determine the Maxwell-Boltzmann distribution of kinetic energies in an ideal monatomic gas.
Thus, if there are n partitions of i at each of N points the thermodynamic probability that the
ith is employed n, times is:
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p-1 (29)

fI n!

where pi is the occupational probability of the ith region. To determine p, we divide the hatched
area A into n regions of area 6A (i = 1, n), each characterized by a value of 0, say 4i and see
that when the concentration is c the probability that a point k lies in a particular area MAi is

pA = 1 - exp(-C8A,) - C8Ai (30)

provided the area 5A, is sufficiently small. On the basis that the most probable configuration of
a system having a large number of parts is that which actually occurs, to determine this
configuration we have only to maximize P subject to the constraints offered by (27) and (28).
To proceed we take advantage of the facts that N and n, are both large to employ Stirling's
approximation and then

n n

81inP = • n + Inp- Inn, (31)
5-1 1-1

while (27) and (28) become

n 8ni = 0 (32)

8n,4, = 0 (33)
1-1

Introducing the Lagrangian multipliers X and -y we have

Ip, -Innf,+ y+ X4i0 (34)

n, = e (35)

then from (28) and (33) we have
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N ,= Os (36)

X4oL eJ'L = S (37)
1-1

and on substituting for ni in the logarithm of P (3 1) we find, after some manipulation

P = S~e-,O (38)

Then invoking (30) and (35) and proceeding to the limit of small quantities &,4, (38) becomes

P = e - cfe )IdA]v (39)

We have now to determine s and X. Here, where A is the area indicated in fig. (1) we have

2R Mr2a -sinVM()

S = cf f( + r)dl f exOd@ (40)

The determination of X is assisted by the realization that

dn I 1dS _'• 4•,••i_ s - (41)

dA S A .. S N

and X must be such that

--- 0 (42)

This question can be resolved only by numerical means. In the special and unrealistic case in

which a -4 1 we find, independent of the value of T, that X = 1.41/a.

b. Comparison with experiment

* In comparison with the case treated previously"6 there are additional complications: the
obstacles have finite radius and; because the radii of individual obstacles differ one from
another, they have variable strengths. Bacon, Kocks and Scattergood'7 have shown through
numerical studies that the Orowan stress, r for a linear array of impenetrable circular blocks
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to dislocation motion having radius R and inter-center spacing L is given by

_b lnX (43)
4n L -2R

where X is the harmonic mean of L and 2R (2). Thus, the specific strength of these obstacles
is variable and denoted by the term lnX/2,r. Here, the obstacles are not distributed along a
straight line nor regularly spaced. Additionally their strengths are variable. This additional work
must be done before a comparison with experiment can be performed,

c. Implications

* That the zero-temperature is analytically tractable means that we have a good measure against
which to check more general numerical models.

d. Plans

* The results will be used, for checking purposes, as the zero-temperature limit of the finite-
temperature model planned in task 111.
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Task 200. Lifetimes of piezoelectric ferroelectrics

The utility of PZT as a 'smart material' stems from its high dielectric constant, which gives
large changes in polarization for quite small electric fields. Unfortunately, this property is linked
to ferroelasticity, which can be destructive of the mechanical stability. It is this consequence,
which leads to premature mechanical failure of sensors subjected to cyclic loading, which forms
the critical issue.

a. Theory

In order to determine what can be done to address the critical issue, it is instructive to review
the physics of ferroelectrics. The properties of PZT are primarily a consequence of a phase
transition in which the crystal structure changes from cubic above the Curie temperature (about
K) to body-centered tetragonal, with the c axis slightly longer than the a axes (0.5 to 3%,
depending on composition). The cell-centering Zr/Ti atoms are positioned slightly off-center
along the c-direction, so that each cell has a small, permanent elec,..c dipole moment. In the as-
trawvfbLmed state the dipoles are arranged in small domains, with a volume fraction f = 1/3
oriented along each of the three crystal axes, so that there is no net polarization. The elastic
energy is

U.. = (1+3t)(1-J) (44)

where &E is the transformation strain and f is the volume fraction of cells oriented with c-axis
parallel to a particular crystal axis. It is clear that the elastic energy is a maximum for f= 1/3.
The electric energy (the interaction energy of the dipoles) will be a minimum for the same value
of f. To produce a useful material, the material must be polarized, or 'poled'; that is, exposed
for a short time (10-60 minutes) to a large electric field (of order 1-10 MV/m) at a temperature
of about 450K, somewhat below the Curie temperature but above the service temperature. This
causes a preferential orientation of the cell c-axes along the electric field axis, in a sense such
that the dipoles lie as closely antiparallel as is possible to the applied field. This decreases the
elastic energy, as can be seen from (44) if f is taken to be the volume fraction of dipoles lined
up antiparallel to the field axis. The internal electric energy is increased, but the total electric
energy decreases because of the negative energy of the antiparallel dipoles in the applied field.
The material is then cooled and the electric field removed, leaving a low elastic energy, a high
electric energy and a spontaneous polarization P,. The poled state is never maximally polarized.
The best that can be done is to rotate the dipoles within each grain to the crystal axis most
closely parallel to the field direction, which may leave a dipole-field angle of up to 45*. Even
this optimum polarization cannot be realized, because the dipole rotation causes grain boundary
stresses to develop and increase to the point that further rotation is suppressed. Therefore the
poled grains consist of domains which are differently oriented, but with a large net dipole
moment in the direction of the applied field. That the unpoled and poled states are energetically
metastable indicates that there is an energy barrier associated with the change; otherwise a
transition to the ground state would occur spontaneously. Therefore changes in the polarization
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take place by one or more thermally activated processes, for example domain nucleation and
growth or domain wall motion. The magnitude of P, after poling is of order 0.1 - 0.5 coulombs
m2 . The electrostatic energy density of a system of parallel dipoles in SI units is

2 3co 2  
- 1(4)A,, Eo 3 (45)

8 'ACVa r3

where Po is the dipole size, Ko is the permittivity of free space, v. is the volume of the unit cell.
The sum is performed for a single dipole and is taken over all neighboring dipoles, with ri the
magnitude of the vector joining the origin to the ith neighbor and 6i the angle between this vector
and the dipole axis. For a cubic structure the sum in (45) vanishes by symmetry; therefore the
magnitude of the electrostatic energy depends on the transformation strain &E (in fact the
dependence varies as 8E2, the same as the elastic energy). For &E of 0.01, the sum in (45) has
a value of about 0. Iv , .

For a transformation strain of 0.01 and a shear modulus of 100GPa, the elastic energy of the
unpoled state is about 3MJ/m 3. In a completely poled state, with P, = 0.1 - 0.5C/m2, the
electrostatic energy varies from 5 to 125MJ/m 3. Although these are only approximate quantities,
the indication is that the electrostatic energy stored during the poling process is substantially
larger than the lost elastic energy. This means that the poled material exists in a relatively high-
energy, metastable state.

Now attention will be turned to the question of premature failure under cyclic deformation,
which occurs under conditions of mechanical loading"8 for quite moderate stress levels. The
propensity toward mechanical instability is not surprising in view of the magnitude of the stored
electrostatic energy, but the mechanism has yet to be determined. The specific experiments
cited"8 involve cyclic bending such that the tensile and compressive stresses developed act normal
to the poling axis. The larger part of the specimen, therefore, consists of domains in which the
polarization, together with the c-axis, is oriented more normal than parallel to the stress. In the
tensile part of the cycle, domain walls will migrate to favor domains oriented more parallel to
the stress direction and new domains will nucleate and grow. This effect is analogous to the
poling process in that the field-coupled elastic energy is increased, but is compensated by a
negative work done by the applied stress. At the same time the electrostatic energy is reduced.
When the tensile stress is released, the stored elastic energy becomes manifest as internal
stresses, principally at the grain boundaries. Because the electrostatic energy in the poled state
is so large, the elastic energy developed can be much larger than in the original, unpoled state
and failure, most likely by intergranular fracture, is inevitable.

b. Comparison with experiment

The arguments above explain the basic physical reasons for failure, but not the specific
mechanics. In the compressive cycle, the effects discussed above will be reversed, which negates
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the simple rationalization. Therefore two observations remain to be explained.

1. According to the mechanism above, a simple monotonic tensile stress, applied for a sufficient
time and then released, would be adequate for failure to occur by thermally activated creep of
the domain structure. There are no explicit experimental measurements to confirm or refute this
hypothesis. However, it is reasonable to expect that the effect would have been noticed and
reported, if it occurred.

Domain walls are susceptible to pinning by defects"9 ; these may be vacancies, substitutional
inhomogeneities or, of course, grain boundaries. It is reasonable to expect that the response to
a monotonic stress will be decay into a state in which all walls are pinned, so that further
development of the substructure is inhibited. In fact the experimental results from NIST'8 show
that the fracture stress at room temperature in monotonic bending is about 140MPa, or about 1.4
x 10-'1. This is a relatively low stress and may reflect a catastrophic release of energy which
is likely to occur once a cr~ck is nucleated.

2. Cyclic stressing, according to the same mechanism, should be completely reversible.
However, experiment"8 shows that under cyclic stressing at 70% of the fracture stress, the
lifetime is in excess of i0 cycles. At stress amplitudes from 75 % to 95 % of the fracture stress,
the lifetime decreases sharply from 10' to 102 cycles (although the spread is large). Clearly, not
only is there is a threshold stress, but there is also a cyclic irreversibility for stress levels in
excess of the threshold.

The presence of a threshold stress is compatible with thermally activated domain wall motion.
There are several reasons for irreversibility. The most obvious is that the processes of domain
annihilation and nucleation are not reversible. Another stems from the pinning of domain walls,
as discussed above. Once a wall segment is pinned, it cannot easily retrace its propagation path.
Therefore wall motion in the depoling sense will not easily reverse, instead proceeding in the
depoling sense by a ratchet mechanism. The depoling is associated with an increased elastic
energy density, which will be manifest as steadily increasing internal stresses each time the
applied cyclic stress is relaxed. A third reason for irreversibility results from the binding of
dislocations to the domain walls. With a misfit of 1 % at the interface between parallel and
normal domains, a wall of length just a hundred lattice constants will accumulate a total misfit
of a complete lattice constant; the energy of the wall can then be reduced substantially by
forming a misfit dislocation, that is an edge dislocation with Burgers vector in the plane of the
wall and with the extra half-plane lying always in the normal domain. Then wall motion is
limited by the rate at which the dislocations can climb. In the tensile part of the cycle, the
dislocations must climb by emitting interstitials (or absorbing vacancies), while in the
compression phase, vacancies are emitted. Any asymmetry in these two processes will be
manifest as an irreversibility. The advantage of this climb mechanism is that the predicted
irreversibility is cumulative, a property not shared by the other irreversible processes discussed
above. Finally, it is also important to look at the piezoelectric properties of PZT, even though
the case in question involves mechanical loading at constant (=0) electric field. Consider the
simple case in which the tensile/compressive stress all lies along the x, axis and the poling axis
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is x3. Then there is a piezoelectric coupling

Ap3 = d311Ol11  (46)

where Api is the polarization increment and dijk is the piezoelectric tensor. The coefficient d3l1
is negative, so that the dipoles lined up antiparallel to the poling axis are increased in magnitude.
The dipoles normal to the poling axis, however, are unchanged. Therefore the electrostatic
energy density becomes larger in the parallel (to the poling axis) domains than in the normal
domains. This means that domain wall motion of such a sense as to increase the size of the
normal domains (as is the case in tension) is accompanied by a small decrease in electrostatic
energy and will be enhanced. In compression the energy in the parallel dipoles becomes smaller.
Since the stress is reversed, the wall motion is reversed and is similarly enhanced. Thus the
piezoelectric effect is completely reversible.

c. Implications

* We conclude that the irreversibility which leads to failure of PZT in cyclic stressing is
connected with ferroelastic domain wall motion and is not influenced by the piezoelectric
character. If the problem is to be corrected, it is essential to determine the mechanism which
controls domain wall mobility. To this purpose, both theory and experiment are required.

d. Plans

* The mechanisms of ferroelastic domain wall motion will be modelled, with the aim of
determining critical parameters which can be derived from or compared with experiment.
Specific questions to be answered are:

1. Is the wall motion governed by the two-dimensional analog of kink pair nucleation and
propagation, or by diffusive dragging of wall defects and dislocations?

2. How are these mechanisms influenced by an electric field of sufficient magnitude to stabilize

the poled state?

3. How do the lifetimes of poled and unpoled specimens compare?

* The theoretical work will be closely coordinated with experimental work at NIST and NRL.
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Figure Captions

Figure 1 Definition of the geometric parameters D, L and 0.

Figure 2 An Orowan plot of strength for dispersion hardened materials.

Figure 3 Plot of strength following the unified approach of equation (2).

Figure 4 The distribution of breaking angles.

Figure 5 The rolling circle construction.

Figure 6 Relationship between tk and tk,,.
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